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概要
向きづけられた S1 の R3 への埋め込みの像を有向結び目という．有向結び目の図式に仮想交
差を加えたものを有向仮想結び目図式といい，そのような図式の同値類として有向仮想結び目が
定義される．これは有向結び目のある種の一般化として知られている．任意の有向仮想結び目に
対し，有限回のある局所変形を行うことで自明な有向仮想結び目に変形できるような局所変形を
有向仮想結び目の結び目解消操作といい，virtualization や virtualized ∆-move などが知られ
ている．また，n-writhe とは任意の 0 でない整数 n に対して定まる有向仮想結び目の不変量で
ある．本講演では，ある条件をもつ整数列に対し，n-writhe の列がその整数列と一致し，かつ
virtualized ∆-move 1回で自明になるような無限個の有向仮想結び目の構成法を紹介する．

1 仮想結び目
向きづけられた S1 を R3 へ埋め込んだ像を有向結び目という．
向きづけられた S1 から R2 へのはめ込みで，特異点が有限個の横断的な二重点のみであるような

ものに対し，その像の各二重点に図 1のような実交差と仮想交差の構造を入れたものを有向仮想結び
目図式という．実交差において，弧がつながっている方を上交差，弧がつながっていない方を下交差
という．また，交差がない有向仮想結び目図式を自明な有向仮想結び目図式という．

図 1: 実交差（左，中央）と仮想交差（右）．

定義 1.1. ([4]). 二つの有向仮想結び目図式 D, D′ が図 2 で表される有限回の一般化ライデマイス
ター変形と R2 上のアンビエントアイソトピーで互いに移り合うとき，DとD′ は同値であるという．
ただし，図 2の図式には任意の向きを入れてよいものとする．この同値関係による有向仮想結び目図
式の同値類を有向仮想結び目という．
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図 2: 一般化ライデマイスター変形．

有向仮想結び目は有向結び目のある種の一般化とみなすことができる．
以下，有向仮想結び目図式と有向仮想結び目を，それぞれ単に仮想結び目図式，仮想結び目と呼ぶ．

2 ガウス図式
定義 2.1. 向きづけられた S1 に有限本の向きづけられた符号付きコードを付け加えたものをガウス
図式という．
仮想結び目図式からガウス図式への対応を考える．D を仮想結び目図式とする．D は向きづけら

れた S1 の R2 へのはめ込みの像であるから，向きづけられた S1 をそのはめ込みの逆像として考え
ることができる．このとき，D の各実交差に対し，その逆像が S1 上に 2点ずつ現れる．（仮想交差
の逆像は考えないことに注意する．）同じ実交差の逆像 2点をコードで結び，上交差の逆像から下交
差の逆像へコードに向きを付ける．さらに，D の各実交差には図 3のように符号を定め，各実交差
に対応するコードに同じ符号を定める．これにより仮想結び目図式 D からガウス図式 Gへの対応が
得られる．
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図 3: 実交差の符号．



例 2.2. 図 4の仮想結び目図式Dは仮想 8の字結び目の図式であり，ガウス図式 GはDに対応する
ガウス図式である．
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図 4: ガウス図式の例．

定義 2.3. 二つのガウス図式 G, G′ が図 5で表される有限回のガウス図式のライデマイスター変形で
互いに移り合うとき，Gと G′ は同値であるという．
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図 5: ガウス図式のライデマイスター変形（ε = ±1）．

定理 2.4. ([2, 4]). 仮想結び目全体の集合と定義 2.3の同値関係によるガウス図式の同値類全体の集
合との間には，仮想結び目図式 D からガウス図式 Gへの対応から導かれる全単射が存在する．
定理 2.4により，仮想結び目とガウス図式の同値類を同一視することができる．

3 n-writhe

Gをガウス図式とする．c =
−−→
PQを始点 P，終点 Qとする Gのコードとし，cの符号を ε = ε(c)

とする．このとき，始点 P と終点 Qの符号を ε(P ) = −ε，ε(Q) = εと定義する．また，コード c



は Gの円周を二つの弧に分ける．コード cが定める弧 γ を図 6のように P から Qに向かうガウス
図式の円周の向きに沿った弧とする．
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図 6: コード cが定める弧 γ．

定義 3.1. ([8]). コード cが定める弧 γ の内部に含まれるすべてのコードの端点について，その符号
の総和を cの indexといい，Ind(c)と表す．また，任意の 0でない整数 nに対し，ガウス図式 Gの
indexが nであるコードの符号の総和を n-writheといい，次のように表す：

Jn(G) =
∑

Ind(c)=n

ε(c).

補題 3.2. ([8]). D, D′ を仮想結び目図式とし，G, G′ をそれぞれ D, D′ に対応するガウス図式とす
る．D と D′ が同値であるならば，任意の 0でない整数 nに対し，Jn(G) = Jn(G

′)が成り立つ．
補題 3.2より，0でない各整数 nに対し，n-writheは仮想結び目の不変量となる．よって，K を
仮想結び目，D を K の仮想結び目図式，Gを D に対応するガウス図式とすると，任意の 0でない
整数 nに対し，仮想結び目K の n-writheを Jn(K) = Jn(G)と定める．

定理 3.3. ([8]). 任意の仮想結び目K は∑
n ̸=0 nJn(K) = 0をみたす．逆に，任意の整数列 {rn}n ̸=0

に対し，∑
n ̸=0 nrn = 0 をみたすならば，ある仮想結び目 K で，任意の 0 でない整数 n に対し，

Jn(K) = rn をみたすものが存在する．
仮想結び目K の不変量 odd writhe J(K)を次のように定義する ([5, 8])：

J(K) =
∑
n∈Z

J2n−1(K).

命題 3.4. ([1]). 任意の仮想結び目K に対し，K の odd writhe J(K)は偶数である．

4 結び目解消操作
仮想結び目図式の局所変形について，任意の仮想結び目図式が有限回のその局所変形と一般化ライ

デマイスター変形により自明な仮想結び目図式に変形されるとき，その局所変形を仮想結び目の結び
目解消操作という．結び目解消操作に対し，仮想結び目 K の仮想結び目図式を自明な仮想結び目図
式に変形するのに必要な結び目解消操作の最小回数をK の結び目解消数という．



図 7が表す仮想結び目図式の局所変形を virtualizationという．ただし，仮想結び目の向きは任意
に与えてよいものとする．virtualization は仮想結び目の結び目解消操作である．virtualization に
よる仮想結び目K の結び目解消数をK の virtual unknotting numberといい，uv(K)と表す．

図 7: virtualization.

定義 4.1. ([6]). 図 8 が表す仮想結び目図式の局所変形を virtualized ∆-move といい，図式上では
v∆と表す．ただし，仮想結び目の向きは任意に与えてよいものとする．
virtualized ∆-moveをガウス図式で表すと，図 9のようになる．
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図 8: virtualized ∆-move.
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図 9: ガウス図式における virtualized ∆-move（ε = ±1）．

定理 4.2. ([6]). virtualized ∆-moveは仮想結び目の結び目解消操作である．
virtualized ∆-move による仮想結び目 K の結び目解消数を K の v∆-unknotting number とい

い，uv∆(K)と表す．

命題 4.3. ([6]). 任意の仮想結び目K は uv∆(K) ≥ 1
2 |J(K)|をみたす．



5 ガウス図式の連結和
定義 5.1. G1, G2 をガウス図式で，次の条件をみたす G1 のコード c1, c2 と G2 のコード c′1, c

′
2 があ

るものとする：

1. ci の符号を εi，c′i の符号を ε′i としたとき，εi = ε′i が成り立つ（i = 1, 2），
2. c1 の始点と c2 の終点が円周 S1 上でその順に隣り合っている，
3. c′2 の始点と c′1 の終点が円周 S1 上でその順に隣り合っている．

このとき，図 10のように c1 と c2 および c′1 と c′2 の隣り合った端点の近傍を取り除き，c1 と c′1 お
よび c2 と c′2 をつなげ，さらに 2 つのガウス図式の円周もつなげて得られるガウス図式をコード
c1, c2, c

′
1, c

′
2 に関する G1 と G2 の連結和といい，G1 ♮G2 と書く．
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図 10: c1, c2, c
′
1, c

′
2 に関する G1 と G2 の連結和 G1 ♮G2．

補題 5.2. 定義 5.1の条件をみたす二つのガウス図式 G1, G2 について，Ind(c1) = Ind(c2) = 0なら
ば，任意の 0でない整数 nに対し，Jn(G1 ♮G2) = Jn(G1) + Jn(G2)となる．

6 結び目解消操作と n-writhe列
Ohyama–Sakurai[7]により，virtualizationと n-writhe列について次の結果が知られている．

定理 6.1. ([7]). 整数列 {rn}n ̸=0 が
∑

n ̸=0 nrn = 0 をみたすならば，ある無限個の仮想結び目
Km (m ∈ N)で，任意の 0でない整数 nに対し，次をみたすものが存在する：

uv(Km) = 1 かつ Jn(Km) = rn.

これに対し，本研究では virtualized ∆-moveと n-writhe列について次が成り立つことを示す．

定理 6.2. (主結果). 整数列 {rn}n ̸=0 が
∑

n ̸=0 nrn = 0 かつ∑
n∈Z r2n−1 ∈ {0,±2} をみたすなら

ば，ある無限個の仮想結び目 Km (m ∈ N)で，任意の 0でない整数 nに対し，次をみたすものが存
在する：

uv∆(Km) = 1 かつ Jn(Km) = rn.



注意 6.3. 定理 3.3より，任意の仮想結び目K の n-writheについて∑
n ̸=0 nJn(K) = 0となる．さ

らに，仮想結び目K が uv∆(K) = 1をみたすならば，命題 4.3より，K の odd writhe J(K)につい
て |J(K)| ≤ 2となり，命題 3.4より，J(K) ∈ {0,±2}となる．よって，定理 6.2の整数列 {rn}n ̸=0

の条件∑
n ̸=0 nrn = 0と∑

n∈Z r2n−1 ∈ {0,±2}は自然に導かれる．

定理 6.2の証明の概略. 与えられた整数列 {rn}n ̸=0 に対し，定義 5.1の連結和を用いて，任意の自然
数mで図 11のように定まるガウス図式 Gm を定義する（詳細はここでは省略する）．Gm が表す仮
想結び目をKmとすると，これらが uv∆(Km) = 1かつ任意の 0でない整数 nに対し，Jn(Km) = rn

をみたす無限個の仮想結び目となっている．
n-writheが一致することは補題 5.2を用いて示される．uv∆(Km) = 1は，図 11の赤色のコード

を virtualized ∆-move で取り除くことで自明になることが分かる．各自然数 mで Km が異なって
いることについては first intersection polynomial ([3])を計算することで示される．
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図 11: ガウス図式 Gm．
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